Raman nanometrology of graphene: Temperature and substrate effects

نویسندگان

  • Irene Calizo
  • Suchismita Ghosh
  • Wenzhong Bao
  • Feng Miao
  • Chun Ning Lau
  • Alexander A. Balandin
چکیده

Graphene has been a subject of intense interest because of its unique physical properties. Raman spectroscopy became a valuable tool for determining the number of graphene layers and assessing their quality. Here we review our recent results on the effects of substrates and temperatures on Raman signatures of graphene. Specifically, we considered graphene on GaAs, glass, sapphire, standard Si/SiO2 substrates and suspended across trenches in Si/SiO2 wafers. We found consistent values for Raman G peak frequency in the suspended graphene and graphene on standard substrates. Itwas relatively strongly down-shifted by∼5 cm−1 for grapheneonA-plane sapphire. Raman inspection ofmany spots on graphene layers on glass indicated that in some instances G peak was split into doublets. We investigated the temperature dependence of the Raman spectrum of graphene and found that G peak red shifts with increasing temperature despite graphene’s negative coefficient of thermal expansion. Using themeasured temperature coefficient of graphene G peak we were able to adopt Raman spectroscopy for determining the thermal conductivity of graphene. The knowledge of the temperature and substrate effects on graphene Raman spectra is important for extending the application of micro-Raman spectroscopy as a nanometrology tool for graphene characterization and graphene device fabrication. © 2009 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectroscopic Raman Nanometrology of Graphene and Graphene Multilayers on Arbitrary Substrates

Raman spectroscopy is known to be an effective tool for characterization of graphene and graphene multilayers on the standard Si/SiO2 (300 nm) substrates, which allows one to determine non-destructively the number of the graphene layers and assess their quality. The Raman phonon peaks undergo modification when graphene is placed on other substrates due to changes in the nature and density of th...

متن کامل

Temperature dependence of Raman spectra of graphene on copper foil substrate

We investigate the temperature dependence of the phonon frequencies of the G and 2Dmodes in the Raman spectra of monolayer graphene grown on copper foil by chemical vapor deposition. The Raman spectroscopy is carried out under a 532.16 nm laser excitation over the temperature range from 150 to 390 K. Both the G and 2D modes exhibit significant red shift as temperature increases, and the extract...

متن کامل

Raman-based imaging and thermal characterization in near-field laser heating

Micro/nanoparticle induced nearfield laser ultrafocusing and heating has been widely used in laser-assisted nanopatterning and nanolithography to pattern nanoscale features on a large-area substrate. Probing of the temperature, stress, and optical fields induced by the nanoscale nearfield laser heating remains a great challenge since the heating area is very small (~100 nm or less) and not imme...

متن کامل

Synthesis of graphene oxide / polydopamine composite for coating on clay substrate for water treatment

Water purification is a vital and essential thing for human life. The presence of pollutants in water is a major threat to the environment and human health. Various materials have been proposed and used for water treatment in recent years. Recent research has shown the potential of two-dimensional materials such as graphene oxide and its composites for water purification. The goal of this proje...

متن کامل

The effect of doping Graphene Quantum Dots with K, B, N, and Cl on its emitted spectrum

In this work, the effect of doping Graphene Quantum Dots (GQDs) on their emission spectra has been studied. First, graphene has been deposited on SiC substrate by using sublimation method. Second, doped-GQDs have been distributed on the surface of graphene via drop casting. The structure of the samples have been studied and characterized by X-ray diffraction (XRD), Scanning Electron Microscopy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009